Метод наименьших квадратов в Excel — использование функции ТЕНДЕНЦИЯ

Метод наименьших квадратов — это математическая процедура составления линейного уравнения, максимально соответствующего набору упорядоченных пар, путем нахождения значений для a и b, коэффициентов в уравнении прямой. Цель метода наименьших квадратов состоит в минимизации общей квадратичной ошибки между значениями y и ŷ. Если для каждой точки мы определяем ошибку ŷ, метод наименьших квадратов минимизирует:

метод наименьших квадратов excel

где n = число упорядоченных пар вокруг линии. максимально соответствующей данным.

Это понятие проиллюстрировано на рисунке

метод наименьших квадратов excel

Судя по рисунку, линия, максимально соответствующая данным, линия регрессии, минимизирует общую квадратичную ошибку четырех точек на графике. Я покажу вам, как определять это уравнение регрессии с помощью метода наименьших квадратов на следующем примере.

Представьте себе молодую пару, которые, с недавних пор, живут вместе и совместно делят столик для косметических принадлежностей в ванной. Молодой человек начал замечать, что половина его столика неумолимо сокращается, сдавая свои позиции муссам для волос и соевым комплексам. За последние несколько месяцев парень внимательно следил за тем, с какой скоростью увеличивается число предметов на ее части стола. В таблице ниже представлено число предметов девушки на столике в ванной, накопившихся за последние несколько месяцев.

метод наименьших квадратов excel

Поскольку своей целью мы определили задачу узнать, увеличивается ли со временем число предметов, «Месяц» будет независимой переменной, а «Число предметов» — зависимой.

С помощью метода наименьших квадратов определяем уравнение, максимально соответствующее данным, путем вычисления значений a, отрезка на оси y, и b, наклона линии:

метод наименьших квадратов excel

a = yср — bxср

где xср — среднее значение x, независимой переменной, yср — среднее значение y, независимой переменной.

В таблице ниже суммированы необходимые для этих уравнений вычисления.

метод наименьших квадратов excel

метод наименьших квадратов excel

Кривая эффекта для нашего примера с ванной будет определяться следующим уравнением:

ŷ=5.13+0.976x

Поскольку наше уравнение имеет положительный наклон — 0.976, парень имеет доказательство того, что число предметов на столике со временем увеличивается со средней скоростью 1 предмет в месяц. На графике представлена кривая эффекта с упорядоченными парами.

метод наименьших квадратов excel

Ожидание в отношении числа предметов в течение следующего полугода (месяца 16) будет вычисляться так:

ŷ = 5.13 + 0.976x = 5.13 + 0.976(16) ~ 20.7 = 21 предмет

Так что, пора нашему герою предпринимать какие-нибудь действия.

Функция ТЕНДЕНЦИЯ в Excel

Как вы уже, наверное, догадались в Excel имеется функция для расчета значения по методу наименьших квадратов. Это функция называется ТЕНДЕНЦИЯ. Синтаксис у нее следующий:

ТЕНДЕНЦИЯ (известные значения Y; известные значения X; новые значения X; конст)

где:

известные значения Y – массив зависимых переменных, в нашем случае, количество предметов на столике

известные значения X – массив независимых переменных, в нашем случае это месяц

новые значения X – новые значения X (месяца) для которого функция ТЕНДЕНЦИЯ возвращает ожидаемое значение зависимых переменных (количество предметов)

конст — необязательный. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

Например, на рисунке показана функция ТЕНДЕНЦИЯ, используемая для определения ожидаемого количества предметов на столике в ванной для 16-го месяца.

метод наименьших квадратов excel тенденция

Скачать файл с примером расчета значений по методу наименьших квадратов


9 комментариев

  1. Вопрос, я ведь могу в качестве аргумента x использовать множество столбцов. Как в этом случае будет реагировать данная функция. Например, если за еще один параметр я возьму день недели?

    • Даа точно, у меня точно такой же вопрос, а что если не зависимых параметров не один а несколько…. если найдете в пространствах интернета дайте знать… буду весьма благодарен…

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *